STRUCTURAL CHANGES IN PHOSPHATIDYLCHOLINES DURING THEIR CHROMATOGRAPHY ON ALUMINA

A. Sh. Isamukhamedov and S. T. Akramov

UDC 547.953:665.37

No structural changes take place in phosphatidylcholine on silica gel. On columns with the adsorbents neutral ${\rm Al}_2{\rm O}_3$ (according to Brockmann) and ${\rm Al}_2{\rm O}_3$ * treated with ethyl acetate, at constant times of 4, 24, and 48 h a marked decrease in yield and, at the same time, a rise in the amount of deacylated phosphatidylcholine take place. The amounts of unsaturated fatty acids present in both the first and second positions of the phosphatidylcholines also decrease sharply. The amount of the main molecular species remains unchanged, but the molecular composition of the phosphatidylcholines increases on prolonged contact, a nonspecific migration of the acyl radicals in the phosphatidylcholine taking place.

A number of adsorbents are used for the column chromatography of polar lipids: silica gel and alumina (most frequently) and also various Sephadexes and DEAE-cellulose. Various authors have reported a superiority of one adsorbent over others and at the same time defects in them have appeared.

The capacity of Al_2O_3 for causing the hydrolysis of esters and the isomerization of the acyls in mono-, di-, and triglycerides, and also in phospholipids, is well known [1-3].

Jenson and Marks [4] consider that only basic $\mathrm{Al}_2\mathrm{O}_3$ possesses a disrupting capacity, but the treatment of $\mathrm{Al}_2\mathrm{O}_3$ with ethyl acetate eliminates the catalytic centers on the surface of the adsorbent [5]. In a review [6], to obtain accurate results it is proposed to use only $\mathrm{Al}_2\mathrm{O}_3$ treated with ethyl acetate.

The aim of our investigation was to study the influence of Al_20_3 and of silica gel on the structure of a phosphatidylcholine (PC) during column chromatography.

We used type KSK silica gel (treatment described in the Experimental part). For column chromatography, the silica gel was kept in anhydrous chloroform, and for TLC it was kept in glass jars. For TLC we also used type LS 5/40 silica gel (Czechoslovakia). We used alumina, Al_2O_3 (according to Brockmann) (Hungary), and also Al_2O_3 , treated with ethyl acetate as described by Meakins and Swindells [5]. The phosphatidylcholine was isolated from the total phospholipids (PLs) obtained from cotton seeds by repeated treatment with ethanol and subsequent freeing from accompanying substances [7]. As the eluents we used chloroform methanol (1:1) and methanol. In view of the fact that acidified alcohols subject PLs to alcoholysis [8], for final elution we used the chloroform methanol—25% NH₄OH (70:30:2) system. The preparation of the column and the elution of the PCs from the adsorbent were performed in the usual way [7].

The contact of the PC with the adsorbent was performed in a thin layer of silica gel and in columns filled with silica gel, Al_2O_3 , and Al_2O_3 * for 4, 24, and 48 h.

The source of phospholipase A_2 for enzymatic hydrolysis was snake venom (*Vipera lebetina* L.) [9].

The compositions and position distributions of the fatty acid radicals in the PC and lyso-PCs are given in Table 1. In view of the fact that the compositions and position distributions of the fatty acid radicals in the molecules were identical in the case of the contact of the PCs with silica gel for 4, 24, and 48 h, we have given the results only for 48 h. The same situation was observed in the case of TLC on the KSK and LS 5/40 silica gels.

Institute of the Chemistry of Plant Substances, Academy of Sciences of the Uzbek SSR, Tashkent. Translated from Khimiya Prirodnykh Soedinenii, No. 6, pp. 684-688, November-December, 1982. Original article submitted December 24, 1982.

TABLE 1. Compositions and Position Distributions of the Fatty Acid Radicals in the Phosphatidylcholines after Contact with Adsorbents

Phos-	1	Acid												
phatidyl- choline	10:0	11:0	12:0	14:0	15:0	16:0	16:1	18:0	18:1	18:2	x	ė-18.0	ΣS	ΣÜ
Initial phosphatidylcholine														
Total 1 2	$\begin{bmatrix} 0,4\\0,8 \end{bmatrix}$	 - -	$\begin{bmatrix} 0, 4 \\ 0, 3 \\ 0, 5 \end{bmatrix}$	0,2 0.1 0.3	-	17,4 30 7 4,1	0,6 0,6 0,6	$\begin{vmatrix} 3,6 \\ 7,2 \\ - \end{vmatrix}$	27.8 25,7 29,9	48.8 35,0 62,6	0.8 0.4 1,2		$ \begin{array}{c} 22.8 \\ 38.7 \\ 6.9 \end{array} $	77.2 61,3 93,1
In a thin layer of silica gel (TLC)														
1 2	[0, 4]	_	0,3 0,5	0,4	_	29 ,2 5.6	$0.2 \\ 0.1$	7,2	$\begin{vmatrix} 26.2 \\ 29.4 \end{vmatrix}$	35. 7 61.9	$\begin{bmatrix} 0,7\\0,9 \end{bmatrix}$	=	37.8 7.8	62,2 92,2
	10 5		.0.0				silica (•	.00.4				16.0	:
$\frac{1}{2}$	$0.5 \\ 0.3$		0,2	$0.1 \\ 0.3$				$\frac{7.2}{-}$		62,2	1,0		7,4	{I {
Total [1.4] — $\begin{vmatrix} 0.8 & 0.5 \\ 0.5 & - & 1.1 & 0.6 \\ 2.3 & - & 0.5 & 0.4 \end{vmatrix}$ — $\begin{vmatrix} 1.4 & 2.4 & 2.$														
Total 1 2	$\begin{bmatrix} 1.4 \\ 0.5 \\ 2.3 \end{bmatrix}$	=	0,8 1,1 0,5	0,5 0,6 0,4	<u> </u>	17.5 30.7 4.3	0,6 0,8 0,4	2,4 4,8	$28,9 \\ 24,6 \\ 33,2$	47.9 36.9 58,9	_		$\begin{bmatrix} 22.6 \\ 37.7 \\ 7.5 \end{bmatrix}$	77,4 62,3 92,5
On Al ₂ O ₃ * after contact for 4 h														
Total 1 2	$\begin{bmatrix} 1,2\\0,9\\1,5 \end{bmatrix}$	<u>-</u>	$\begin{bmatrix} 0.7 \\ 0.8 \\ 0.6 \end{bmatrix}$	0.8 1.0 0.6	- -	17,3 30,5 4,1	0,4 0,5 0,3	$\begin{bmatrix} 2,9\\5,8\\- \end{bmatrix}$	29,1 24,8 33,4	47,6 35,7 59,5	_	-	$\begin{bmatrix} 22 & 9 \\ 39 & 0 \\ 6 & 8 \end{bmatrix}$	77,1 61,0 93,2
								contact						
Total 1 2	$\begin{vmatrix} 2,6\\0.8\\4,4 \end{vmatrix}$	$\begin{bmatrix} 1,6\\1,2\\2,0 \end{bmatrix}$	1,6 1,4 1,8	$\begin{bmatrix} 1,2\\1,0\\1,4 \end{bmatrix}$	_	15.9 28.0 3,8	2,4 3,2 1,6	3,4 6,8 -	25,4 22,2 28,6	45,9 35,4 56,4	=	=	26.3 39,2 13,4	73,7 60.8 86,6
					On .	A1 ₂ 0*	after o	ontact	for 24	h				
Total 1 2 Lyso-PC	3.1 0.2 6.0 3.4	2,7	3,6 5,7 1,5 3,8	3, I 5, 1 1, 1 4, 3	_	4,6 22,9	1.8 1.6	5,1 10,2 - 8,8 contac	29, 0 22,2	$\begin{bmatrix} 56.0 \\ 27.3 \end{bmatrix}$		_	33,0 52,8 13,2 45,9	67.0 47,2 86.8 54,1
	1, 7	ام م	1	0.2			•				4.6	ا ، ، ا	ao	C1 77
Total l 2 Lyso-PC	3.4	4,0 - 0,5	$\begin{bmatrix} 2, 8 \\ 2, 8 \\ 0, 7 \end{bmatrix}$	3.7 0,9 1.9	2,0 4,3 0,9 1,1	23.6 6.2 17,7	7,2 1,2 2,0	$ \begin{array}{r} 6 & 9 \\ 13 & 8 \\ \hline 4,7 \end{array} $	18,9 25,9 24,6	55,1 11,2 59,0 40,4	7,0 2,2 1.0	0,1 3,7 2,0	62,7 13,9 33,0	61,7 37,3 86,1 67,0
On Al ₂ O ₃ * after contact for 48 h														
Total 1 2 Lyso-PC	- - 0,3	$0.3 \\ 0.6 \\ - \\ 0.3$	0,9	0,6 0,6 0,6 0,8	0,6 0.8 0,4	15,2 26,1 4,3 15,8	16	$\frac{5,2}{10,4}$	24 6	31.9	<u>-</u>	1,6	41,9	75,6 5 8,1 93,1 77,3

The yield of PC on silica gel amounted to practically 100% in all cases; on Al_2O_3 to 92.2% and on Al_2O_3* to 93.2% with contact for 4 hours, 86.4% (PC) and 6.9% of lyso-PC, and 86.9% (PC) and 6.4% of lyso-PC at 24 h; 17.5% (PC) and 27.5% lyso-PC and 46.3% and 23.7% lyso-PC at 48 h, respectively. On Al_2O_3 the yield of PC fell from 92.2% to 86.4% to 17.5% and on Al_2O_3* from 93.2% to 83.9% to 46.3% for 4, 24, 48 h, respectively. The amount of lyso-PC increased from 6.9 and 6.4% at 24 h to 27.5 and 23.7% at 48 h for Al_2O_3 and Al_2O_3 , *respectively. The lowest yield and most pronounced deacylation of the PC was observed on Al_2O_3 and Al_2O_3* with contact for 48 hours. In actual fact, in this case the deacylation of the PC took place more slowly on the Al_2O_3* and the yield of PC was three times higher than on Al_2O_3 .

From the results of the experimental work we have drawn the following conclusions:

On silica gel and in TLC the yield is practically 100% and no degradation of the PC is observed;

 Al_2O_3 * has proved to be a milder adsorbent than Al_2O_3 , but in both cases on prolonged contact the yield of PC decreased sharply and its deacylation increased.

TABLE 2. Compositions and Position Distributions of the Fatty Acid Radicals in Phosphatidylcholines Taking Their Elution from the Column into Account

Phos-		Acid												
phati- dyl- choline	I 0:0	11:0	12:0	14:0	15:0	16:0	16:1	18:0	18:1	18:2	х	e-1 8:0	ΣS	ΣU
On Al ₂ O ₃ after contact for 4 h (yield 92.2%)														
Total 1 2	$\begin{bmatrix} 1,2 \\ 0.4 \\ 2,2 \end{bmatrix}$	_	$\begin{bmatrix} 0.7 \\ 1.0 \\ 0.4 \end{bmatrix}$	0,4 0,5 0,3	<u> </u>	16,1 28,3 3,9	$\begin{bmatrix} 0.5 \\ 0.7 \\ 0.3 \end{bmatrix}$	$\begin{bmatrix} 2.2 \\ 4.4 \\ - \end{bmatrix}$	26,6 22,6 30,6	44.1 34.0 54,2		<u>-</u>	20,8 34.7 6,9	71.4 57.5 85,3
On Al ₂ O ₃ * after contact for 4 h (yield 93.2%)														
Total 1 2	1,4 0,8 1,4	_	$\begin{bmatrix} 0.6 \\ 0.7 \\ 0.5 \end{bmatrix}$	0,7 0,9 0.5	=	16.1 28.4 3,8	0,3 0,4 0,2	$\begin{bmatrix} 2.7 \\ 5 & 4 \\ - \end{bmatrix}$	27,1 23,1 31,1	44 3 33 3 55 3	_		21,3 36,3 6,3	71,9 56,8 86,9
	1 1,4 - 0.6 0.7 - 16.1 0.3 2.7 27,1 44.3 - - 21.3 71.9 0.8 - 0.7 0.9 - 28.4 0.4 5.4 23.1 33.3 - - 36.3 56.8 1.4 - 0.5 0.5 - 3.8 0.2 - 31.1 55.3 - - 6.3 86.9 On Al ₂ O ₃ after contact for 24 hours (yield 86.4%)													
Total 1 2	$\begin{bmatrix} 2,2\\0&6\\3.8 \end{bmatrix}$	1.4 1,7 0,7	1.4 1.2 1.6	1.0 0,8 1,2		$ \begin{bmatrix} 13,7 \\ 24,2 \\ 3,2 \end{bmatrix} $	$\begin{bmatrix} 2.1 \\ 2.9 \\ 1.3 \end{bmatrix}$	2.9 5,8	21.9 19.1 24.7	39,6 30,5 4 8 ,7		_	22,3 33,8 11,6	$\begin{bmatrix} 63.7 \\ 52.6 \\ 74.8 \end{bmatrix}$
	On Al ₂ O ₃ * after contact for 24 hours (yield 86.9%)													
Total 1 2	$\begin{bmatrix} 2,7\\0,2\\5,2 \end{bmatrix}$	<u>-</u>	3,1 4,9 1,3			15,7 27,4 4,0 O ₃ aft							28,6 45,8 11,4	58,8 41,5 77,1
Total	103	103	102		_								167	1 10 8
1 2	0.6	0,6	0.4	0,6	0.8	4,1 1,1	1.2 0,2	2 4	3 3 4,5	1,9 10,3	1.2	0,6	$\begin{bmatrix} 6,7\\11.0\\2,4 \end{bmatrix}$	6.5 15. 1
On Al ₂ O ₃ * after contact for 48 hours (yield 46.3%)														
Total 1 2	=	$\begin{bmatrix} 0.1 \\ 0.2 \\ - \end{bmatrix}$	_	$\begin{bmatrix} 0,2\\ 0,2\\ 0,2 \end{bmatrix}$	0,2 0,3 0,1	7,0 12,1 1,9	$\begin{bmatrix} 0.7 \\ 0.7 \\ 0.7 \\ 0.7 \end{bmatrix}$	$\begin{vmatrix} 2.4\\4.8\\- \end{vmatrix}$	12, 1 11,4 12,8	$ \begin{array}{c} 22,1 \\ 14.7 \\ 29,5 \end{array} $	<u>-</u>	1.1 1.5 0.7	$\begin{vmatrix} 11.3 \\ 19.4 \\ 3.2 \end{vmatrix}$	$\begin{vmatrix} 35.0 \\ 26.9 \\ 43.1 \end{vmatrix}$

The next stage of our investigations was the study of the structural changes taking place in the PC molecule on contact with the adsorbents mentioned.

We calculated the amount of fatty acids of the PCs, taking their elution from the column into account (Table 2). As follows from the figures given, changes take place mainly as the result of a decrease in the amount of the main fatty acids.

On Al_2O_3 and Al_2O_3 * the losses of fatty acids for 4, 24, and 48 h were as follows: in the case of the 16:0 acid, $1.3 \rightarrow 4.3\%$ and $1.7 \rightarrow 14.8\%$ and 10.4%; for the 18:1 acid, 1.2 and $0.7\% \rightarrow 5.9\%$ and $6.5\% \rightarrow 23.9\%$ and 15.7%; for the 18:2 acid, 4.7% and $4.5\% \rightarrow 9.2\%$ and $14.4\% \rightarrow 42.7\%$ and 26.7%, respectively. In parallel with this, the quantitative yield of the main molecular species, 16:0-18:1, 16:0-18:2, 18:1-18.2, 18:1-18:1, 18:2-18:1, and 18:2-18:2, decreased, while the complexity of molecular composition increased on Al_2O_3 * with contact for 48 hours from 64 to 96 and 72 species, respectively.

Thus, with respect to the compositions and position distributions of the fatty acids in the PCs the following conclusions can be drawn:

The amount of unsaturated fatty acids present in both the first and second positions of the PCs decreases on prolonged contact with Al_2O_3 and Al_2O_3* ;

The number of main molecular species decreases but the complexity of molecular composition in the PCs increases.

After 48 h contact with Al_2O_3 , epoxystearic acid (e-18:0) was identified, this apparently having been formed as the result of the oxidation of oleic acid.

In the case of prolonged contact with Al_2O_3 and Al_2O_3* , a nonspecific migration of the acyl radicals in the PC molecule takes place.

Thus, for the separation, isolation, and structural studies of phospholipids, KSK silica gel treated as described in the Experimental part has proved to be most suitable.

EXPERIMENTAL

Granules of KSK silica gel were ground in a ball mill to a size of less than 250 μ . They were covered with dilute nitric acid (1:1) and were stored in it for a month, and were then washed with distilled water on a filter to neutrality. The silica gel was dried in the air and washed with chloroform methanol (1:1), and was then dried in the air again and in an oven at 600°C for 8 h.

The Al_2O_3 was treated with ethyl acetate by the method of Meakins and Swindells [5].

For TLC, 5% of gypsum was added. For column chromatography, 2 \times 50 cm steel columns filled with 10 g of adsorbent were used, and before the charging of the PCs (80 mg) they were first washed with 100 ml of chloroform and with 100 ml chloroform—methanol (1:1). The PCs were eluted from the column with chloroform (100 ml), chloroform—methanol (1:1) (200 ml), methanol (100 ml), and chloroform—methanol—25% NH₄OH (10:30:5) (150 ml). Elution was monitored with aid of TLC in the chloroform—methanol—25% NH₄OH (70:30:5) system.

Enzymatic hydrolysis was performed with the aid of phospholipase A_2 (snake venom) at pH 9.5, and alkaline hydrolysis and the treatment of the hydrolysis products as described previously [7].

The methyl esters of the fatty acids were analyzed on a Chrom-41 chromatograph. The solid phase was Celite 545, 60—80 mesh, impregnated with 17% of poly(ethylene succinate) and 19% of poly(diethyleneglycol succinate), the temperature of the thermostat being 198-200°C, that of the detector 230°C, and that of the evaporator 230°C, with a column 2.5 m long.

SUMMARY

No structural changes take place in a phosphatidylcholine on silica gel.

In columns with the adsorbents Al_2O_3 and Al_2O_3* on contact for 4, 24, and 48 h there is a marked fall in yield, and at the same time the amount of deacylated phosphatidyl-choline increases. Furthermore, migration of the acyl radicals in the phosphatidylcholine molecule is observed.

We consider that alumina is unsuitable for structural investigations of phospholipids.

LITERATURE CITED

- 1. R. A. Stein and V. Slawson, Prog. Chem. Fats Other Lipids, 8, No. 3, 380 (1966); C. Litchfield, Analysis of Triglycerides, Academic Press, New York (1972), p. 161; W. W. Christie, Lipid Analysis, Pergamon Press, Oxford (1976), p. 56.
- 2. S. D. Gusakova, T. V. Panekina, and A. U. Umarov, Khim. Prir. Soedin., 310 (1978).
- 3. O. Renkonen, J. Lipid Res., 3, 181 (1962).
- 4. G. R. Jensen and T. A. Marks, Lipids, 1, 451 (1966).
- 5. G. D. Meakins and R. I. Swindells, J. Chem. Soc., 1044 (1959).
- 6. A. V. Zhukov and A. G. Vereshchagin, Fiziol. Rast., <u>27</u>, No. 1, 171 (1980).
- 7. A. Sh. Isamukhamedov, L. A. Shustanova, and S. T. Akramov, Khim. Prir. Soedin., 22 (1976).
- 8. O. W. Thielle and W. Z. Wober, Physiol. Chem., 326, 89 (1961).
- 9. A. Sh. Isamukhamedov, L. A. Shustanova, and S. T. Akramov, Khim. Prir. Soedin., 669 (1975).